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A Generalized Method for Analyzing Shielded
Thin Microstrip Discontinuities

LAWRENCE P. DUNLEAVY AND PISTI B. KATEHI, MEMBER, IEEE

.4bstracf—A new integral equation method is described for the accurate

full-wave analysis of shielded thin microstrip discontinuities. The integral

equation is derived by applying the reciprocity theorem, then solved by the

method of moments. In this derivation, a coaxial aperture is modeled with

an equivalent magnetic cnment and is used as the excitation mechanism for

generating the microstrip currents. Computational aspects of the method

have been explored extensively. A summary of some of the more interest-

ing conclusions is included.

I. INTRODUCTION

T HE NEED FOR more accurate microstrip circuit

simulations has become increasingly apparent with

the advent of monolithic microwave integrated circuits

(MMIC’S), as well as the increased interest in millimeter-

wave and near-millimeter-wave frequencies. The develop-

ment of more accurate microstrip discontinuity models,

based on full-wave analyses, is of the utmost importance in

improving high-frequency circuit simulations and reducing

lengthy design cycle costs. Further, in most applications

the microstrip circuit is enclosed in a shielding cavity (or

housing) as shown in Fig. 1. There are two main conditions
where shielding effects are significant: 1) when the fre-

quency approaches or is above the cutoff frequency ~c for

higher order modes and 2) when the metal enclosure is

physically close to the circuitry. A full-wave analysis is

required to accurately model these effects.

Although shielding effects have been studied to some

extent in the past (e.g. [1]), the treatment has been incom-

plete, particularly for more complicated structures such as

coupled line filters. Further, shielding effects are not accu-

rately accounted for in the discontinuity models of most

available microwave CAD software. To address these inad-

equacies, this paper develops an accurate method for ana-

lyzing thin strip discontinuities in shielded microstrip. The

method presented is based on an integral equation ap-

proach. The integral equation is derived by an application

of the reciprocity theorem and is then solved by the
method of moments.
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Fig. 1. Basic shielded microstrip geometry.

To derive a realistically based formulation, a coaxial

excitation mechanism is used. To date, all full-wave analy-

ses of microstrip discontinuities use either a gap generator

excitation method [2]–[4] or a cavity resonance technique

[5], [6]. Both of these techniques are purely mathematical

tools. The former has no physical basis relative to an

actual circuit. The latter is also abstract, since in any

practical circuit some form of excitation is present. In fact,

one of the most common excitations in practice comes

from a coaxial feed (Fig. 1). A magnetic current model for

such a feed is used in the present treatment as the excita-

tion.

In addition to developing the theory, computational

aspects of the solution are explored extensively. This is an

important area that has been largely neglected in the

presentation of numerical solutions of this nature. Most

significantly, it is shown that an optimum sampling range

may be specified that dictates how to divide the conduct-

ing strip for best computational accuracy. The method

developed in this paper has been applied to study the

effect of shielding on the characteristics of discontinuities

of the type shown in Fig. 2. Numerical results from this

study are presented in a companion paper [7] and are seen

to be in excellent agreement with measured data.

II. THEORETICAL FORMULATION

The details of the theoretical derivation for the present

method are given in [8]. Hence, only a summary of the key

steps is described below.

0018-9480/88/1200-1758 $01.00 01988 IEEE
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A. Integral Equation

In the theoretical formulation, a few simplifying as-

sumptions aremade toreduce unnecessary complexity and

excessive computer time. Throughout the analysis, it is

assumed that the width of the conducting strips is small

compared to the rnicrostrip wavelength Ag (the” thin-strip”

approximation). In this case, the transverse component of

the current may be neglected. While substrate losses are

accounted for, it is assumed that the strip conductors and

the walls of the shielding box are lossless and that the strip

has infinitesimal thickness. These assumptions are valid

for the high-frequency analysis of the microstrip structures

of Fig. 2, provided good conductors are used in the metal-

ized areas.

Consider the geometry of Fig. 1. In most cases the

coaxial feed, or “launcher,” is designed to allow only

transverse electromagnetic (TEM) propagation, and the

feed’s center conductor is small compared to a wavelength

(lcrd < 1). In these cases, the radial electric field will be

dominant in the aperture and we can replace the feed by

an equivalent magnetic surface current M. [9]. This cur-

rent is sometimes called a frill current. The source ~~

induces the current distribution ~, on the conducting strip

and produces the total electric field ~t”t and the total

magnetic field fit”t inside the cavity as indicated in Fig. 1.

Now consider a cavity geometry similar to Fig. 1, with

the strip conductors as well as the coaxi~ input and output

removed. Assume a test current ~~ existing on a small

subsection of the area which was occupied by the_ strip.

The fields inside this new geometry are denoted by E~ and

~g. Using the reciprocity theorem, the two sets of sources

(~,, ~; and ~) are related according to

where V represents the volume of the interior of the cavity.

Note that the reciprocity theorem has been widely used

for developing integral equations similar to (1) for applica-

tion to antenna and scattering problems [10]–[12]. Since

~~. ~’”’ is zero everywhere inside the cavity, the right-hand

side of (1) vanishes. Reducing the remaining volume inte-

Y
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Fig. 3. Strip geometry for expansion of longitudinal current into over-

lapping sinusoidal basis functions.

grals in (1) to surface integrals results in

where 5’~t,iP is the surface of the conducting strip and sf is

the surface of the coaxial aperture(s). For one-port discon-

tinuities, $ represents the surface of the feed on the

left-hand side of Fig. 1, while for two-port discontinuities

Sf represents both feed surfaces. An integral equation

similar to (2) can be derived for the case of gap generator

excitation by setting ~~$ = O and assuming that Ex is

nonzero at one point on the strip [8].

In order to solve the integral equation (2), the current

distribution ~ is expanded into a series of orthonormlal

functions as followsl:

where IP are unknown current coefficients and N, is the

number of sections considered on the strip (Fig. 3). The

function ~(y) describes the transverse variation of the

current and is given by [2], [13]

I
2

Yo–w/2<y

4’(Y) = (#-Yo),
2’ < Yo + w’/2 (4)

——
w

( o, otherwise

where W is the width of the microstrip line and YO is the y

coordinate of the center of the strip with respect to the

origin in Fig. 1.

lThe assumed time depenc[ence N e ~@l.
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The basis functions aP(x) are described by

[

sin[K(xP+l–x)]

sin ( KIX ) ‘

IaP(x) = sin[K(x–xP-l)]

sin ( KIX ) ‘

o,

for p #l, and

{

sin[K(lX–x)]

al(x) = sin ( KIX) ‘

o,

otherwise

O<x<lx
(6)

otherwise

for p =1, where K is a scaling factor, taken to be equal to

the wave number in the dielectric, XP is the x coordinate

of the pth subsection ( = ( p – l)lX), and 1X is the subsec-

tion length (lX = XP+ ~– XP). For computation, all of the

geometrical parameters are normalized with respect to the

dielectric wavelength (Ad); hence the normalized scaling

factor is equal to 2n.

The integral equation (2) can now be transformed into a

matrix equation by substituting the expansion of (3) for

the current ~. The result may be put in the form

[Z][I]= [F’]. (7)

In the above, [Z] is an N, X N. impedance matrix, [1] is a

vector composed of the unknown current coefficients lP,

and [V] is the excitation vector. The individual elements of

the impedance matrix are given by

where SP is the area of the two subsections on either side

of the point XP. The elements of the excitation vector are

found according to

Vq = uffq.~,ds.
s,

(9)

Once the elements of the impedance matrix and excita-

tion vector have been computed, the current distribution is

found by solving (7) as follows:

[z]=[z]-’[v]. (lo)

B, Evaluation of Impedance Matrix Elements

Before evaluating the elements of the impedance matri~

the Green’s function associated with the electric current Jq

is derived. To do this the cavity is divided into two

regions: region 1 consists of the volume contained within

the substrate (z < h), while region 2 is the volume above

the substrate surface (z > h).

The integral form of the electric field is given in terms of

the Green’s function by

E;= – jcopo m[(
d]

i++ .(G’)T.~dv’ (11)
v

where k? = 02p Oc,. The index i indicates that the above

holds in ea~ region (i.e., for i =1,2).

In (11), G’ is a dyadic Green’s function [14] satisfying

the following equation:
.

v@+k:@=-:a(i-7’) (12)

where ~ is the unit dyadic ( = 22 + jj + ,2?), 7 is the

position vector of a field point anywhere inside the cavity,

and 7’ is the position vector of an infinitesimal current

source.

Because of the existence of an air-dielectric interface

and the assumption of a unidirectional current, the dyadic

Green’s function will have the form

The dyadic components of (13) are found by applying

appropriate boundary conditions at the walls: x = O, a;

y = O, b; and z = O, c: and at the air–dielectric interface

[8]. These components may be expressed as

~=ln=o

G~~)= ~ ~ A~~coskXx sink,ysin k~2)(z – c) (16)
m=ln=o

G(2) = ~ ~ B~~sinkXx sinkpycosk~)(z – c) (17)Xz
~=l*=o

where

kX = n m-/a (18)

kY = m~/b (19)

and

~(l; = – rp~coskXx’sin kYy’tan k~21(h – c)

(l)habdl~. cos k,

(24)

A;: = – cp~cos kXx’ sin kv y’ tan k~ljh

abd ~%. COS k:2)(h – c)

(25)

~::

_ –cp. (l-e~)kXcoskXx’ sinkvy’tan k$)h tan k~2)(h–c)
—

abd ~~.dz~~ COS k:l)h

(26)
~::

_ –q.(l–c~)kXcoskXx’ sinkYy’tan k~l)htank~2)(h–c)
—

abd1mnd2mn cos k~2)( h – c)

(27)
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In (24)-(27), c: is the complex dielectric constant of the current is given by [9]

substrate and V.

(

2 forn=O
a,=–

(28)

()

4
%1= ~ forn#O pln ~

a

(38)

d k(’) tan k~’)h – k$j tan lc~2)(fi – C)
(29) where V, is the complex voltage applied by the coaxial linelmn = z

d k(2)c * tan k$2)( h – c) – k~l) tan k~l)h. (30)
2?n72= z r

at the feed point, r~ is the radius of the coaxial feed’s outer

conductor, r. is the radius of the coaxial feed’s inner

In view of (11)–(30), the elements of the impedance conductor, and p,+ are cylindrical coordinates referenced .

matrix may be put in the following form2: to the feed’s center.

Substituting from (38) into (9) yields (with ds = p dp d+)

jtipoK21~ NSTOP

Zqp =
16ab sin2 Kl ‘q{p ~ % cos kXxqcos kXxP vq=–

x fi=o +[~~(x=okfds

()

in –
o[sine Rl, sine R2~]2LN(n) (31) r~

with LN( n ) given by the series . - & ~~fll)~~)(x = 0) dpd+

MSTOP ( )[in 5

LN(n) = ~ L~~. (32)
~=1

+~~;~$)(x=o)dpdo] (39)

The series elements Ln. are given by
.

.[4 J “[J =1(33)

k(2)c* 1– 4 tankj2)(h–c)– k?) 1-- ~ tank(l)h

[k$2)~; tank(2)(h - c)- k$)tank(’)h] “z z,

where Y. is the y coordinate of the center of the strip, and —

b
sin t where S}l) is the portion of the feed surface below the

fort#O
sine(t) = t (34) substrate-air interface (z” = p sin+< - t);S}2)is the por-

1 fort=O tion of the feed surface above the substrate (z” =Ap sin @>
—t);and ll~~)(x = O) and 11~)( x = O) are the @ compo-

forq=l
(35)

nents of the magnetic field in regions 1 and 2, respectively,

‘q= { ~ otherwise evaluated on the plane of the aperture.

After solving for the magnetic fields H;+(x = O) and

R1~=; (K+kX)lX (36) substituting the reSUhimlg expressions into (39), the follclw-

ing formulation is produced for excitation vector elements:

R2~=; (K–kX)lX. (37)

– Vo{~Kl: NSTOP

Vq =

H

~ COS kXx,
C. Evaluation of the Excitation Vector Elements in ~ 4ab sin Kll

~=()

The formulation for the excitation vector elements for
ra

the one-port case will now be carried out. The case for

two-port excitation is a straightforward extension [8].
To evaluate the excitation vector elements according to

. :sinclll~ sine Rz. [MN(n)] (40)

(9), we ~ed to ~nd the magnetic field ~, and the frill

current M, = M++. An approximate expression for the frill where MN(n) is expressed in terms of the series given by

2The expression given here for the impedance matrix elements, and
that given shortly for the excitation vector elements, apply to the case of MSTOP

an open-end or series gap. Slight modifications are necessary for analysls &fN(n) = ~ lfmn. (41)

of parallel coupled line filters. t)l = 1
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The series elements Mm. are given by the following inte-

gral:

A4mn = ~//i?;ndp d+

The above integrations are performed numerically, with

the integrands A;. given by

J2’(lJ = cos+c#Hcosk,(pcos@ + YC)sin kjl)(psin$ + hC)mln

–sin@c~j~sin kY(pcOS@+ ~)cosk~l)(p sin@+ k.) (43)

for p and @ in region 1, and

.4%:) = COS@::nCOSkY(p COSI#I + Y,)

.sink$z)(psin+– c+ hC)–sin@c}~,, sinky(pcos@+YC)

.cosk$2)(p sinq5-c+ h,)

(44)

for p and @ in region 2. In (43) and (44) YCand h. are the

y and z coordinates of the coaxial feed, and

~(1)

~:wn . __vc-

{

~(1)~$2)c~ tan k$z)( A – C)

k,d2mn z

— [(k$2))2c: - k~(l - c:)] tank$’)(h - c)) (47)

~.ky tan k$l)h w
Jon =

d,mn COS k;2)(h – c) [1
sin kyYo Jo ky ~ . (48)

The above outlines the theory for computing the current

distribution on the conducting strips of shielded microstrip

discontinuities. The next step is to use the current distribu-

tion to derive the network parameters of the discontinuity

under consideration. However, since the methods used to

derive network parameters are described elsewhere [2], [8],

[15], only a brief summary is given in the Appendix.

The theoretical method developed above has been im-

plemented in a Fortran program. The remainder of the

paper addresses computational aspects of the solution for

the current distribution and discontinuity network parame-

ters.

111. COMPUTATION OF CURRENT DISTRIBUTION

To gain insight into the nature of the computations, we

will now examine plots of a typical impedance matrix,

excitation vector, and current distribution for an open-

ended microstrip line.

/zqp I

Fig. 4. Impedance matrix for an open end

llNVZqP I

I

P=64

I

Fig. 5, Inverted impedance matrix for an open end. The sinusoidal

shape of any row or column corresponds to the shape of the current
distribution.

Fig. 4 shows the amplitude distribution of a typical

impedance matrix. It is seen that the amplitude of the

diagonal elements is the greatest and it tapers off uni-

formly as one moves away from the diagonal. Another

observation is that the matrix is symmetric such that

ZqP = ZPq for any p and q, which is expected from (31).

When the impedance matrix of Fig. 4 is inverted, the

amplitude distribution is as shown in Fig. 5. The inverted

impedance matrix shows a sinusoidal shape for any given

row or column.

Fig. 6 shows the amplitude distribution for the excita-

tion vector. The amplitude is highest over the subsection

closest to the feed and then tapers off smoothly. In con-

trast, the excitation vector for the gap generator method

has only one nonzero value, at the position of the source.
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Fig. 6. Amplitude distribution of the excitation vector.
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Fig. 7. Imaginary part of the current distribution for an open-ended
line.

Multiplying the inverted impedance matrix by the exci-

tation vector of Fig. 6 yields the current distribution of

Fig. 7. It can be seen that the shape of the current is

similar to that exhibited by the first column of the inverted

impedance matrix. This is not surprising given the shape of

the excitation vector.

IV. CONVERGENCE OF Z~P AND ~~

In the expressions of (31) and (40) for the impedance

matrix and excitation vector elements, the summations

over m and n are theoretically infinite. The number of

elements included in these series depends on the conver-

gence behavior of Z~P and V~ with the summation indices.

As seen from (31), the convergence of the impedance

matrix is described mainly by the convergence of LN( n ).

Fig. 8 shows the typical variation of LN(n ) with m and n.

Most of the contributions from LN(n) to the impedance

matrix are concentrated in the first several n values. The

convergence over m is good, and it appears that perform-

ing the computations out to m = 200 may be sufficient.

Note, however, thht the allowable truncation points for the

summations over m and n vary with the geometry. The
values quoted here are for illustration purposes only.

The computation of Z~p over n is illustrated for a

typical impedance matrix in Fig. 9. Shown is the conver-

gence behavior for one row (q= 32) of the 64 X 64 element

impedance matrix of Fig. 4. This behavior is representative

of that for any row. After only a few terms the diagonal

m-
dep en

epende

0

Fig. 8. Three dimensional plot of LV(n) versus summation indices.

/zqpI

64

N=o

P
—

N N=1OO

Fig. 9. Convergence of impedance matrix elements. A row (g= 32)1of
the matrix is seen to be well formed after adding 100 terms on n.

element ( p = q = 32) rises above the others, and after

adding 100 terms the amplitude distribution is well formled.

Similar conclusions can be drawn for the convergence of

the excitation vector elements with respect to the summa-

tion indices m and n.

V. CONVERGENCE OF NETWORK PARAMETERS

The convergence behavior of the elements of the

impedance matrix and excitation vector is important to

examine; yet the more relevant question remains: how are

the final results affected by various convergence-related

parameters?

To answer this question, a series of numerical experi-

ments were carried out, and the main results are presented

here. As illustrated in Fig. 10, an open-end discontinuity

can be represented by either an effective length extension

L,ff or an equivalent capacitance COP.The microstrip efl’ec-
tive dielectric constant c~ff is calculated from the distance

between two adjacent maxima of the open-end current

distribution (Fig. 7).
The experiments irmestigated the convergence behavior

of Leff and c,ff with respect to the sampling rate NX( =

1/1..) and the truncation points NSTOP, MSTOP for the
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Fig. 10. Representation of a shielded microstrip open end

summations over n and m, respectively. These numerical

experiments have been grouped into three separate cate-

gories, each exploring a different aspect of the convergence

behavior.3

A. Effect of K Value

Using the program mentioned above, data were gener-

ated to plot Le.f with ~eff versus NX for several different

values of the normalized scaling factor K of (5) and (6).

Fig. n(a) shows the convergence behavior of L,ff for a

typical case. It is seen that a relatively flat convergence

region exists for all the K values between about 40 and

100 samples per wavelength. Outside this region the con-

vergence behavior depends on K.

At first glance, it appears that the best convergence is

achieved for higher K values (e.g. K = 8m); however, quite

the opposite conclusion results from examining the c.ff

computation. As can be seen from Fig. 1l(b), the best

convergence for c~ff is obtained for low K values.

Based on these and other observations [8], it was deter-

mined that a value of K = 2 m gives the best overall conver-

gence behavior for the L,~~ and C,ff computations.

B. L,ff , 6eff convergence oil n and m

To investigate the convergence of the network parameter

computations with the summation index n, several pro-

gram runs were executed for different values of NSTOP,
with MSTOP fixed at 1000. Data were generated to plot

L~ff and c~ff versus n for several 1X values. Fig. 12(a)
shows that for all the 1X values, good convergence on n is

achieved after 500 terms. The same can be said for the

convergence of c ,ff.

In examining the convergence behavior with n itwas

found that, for a given subsection length lX, cavity length

a, and truncation point NSTOP, a maximum sampling

limit exists beyond which the computed current becomes

3The parameters used fol the plots shown in this section are as follows:
c, = 9.7, W= h =0.025 in, a= 3.5 in, b= c= O.25 in, f =18 GHz,

Leff CONVERGENCE VS. K AND SAMPLING
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Fig. 11. Convergence of Leff and CCff versus sampling.

completely erratic. This is called the erratic current condi-

tion and is given by the following simple relationship:

NSTOP
NSTOP * IX < a or NX > (49)

a-

Outside of the region defined by (49), the numerical

solution appears to be completely stable. To investigate the

convergence behavior with respect to the summation index

m, NSTOP was fixed at 500, and the program was run for

different values of MSTOP. Fig. 12(b) shows that L,ff

converges well on m after about 500 terms. The conver-

gence behavior of c,ff on m was found to be similar to

that for L.ff.

C. Optimum Sampling Range

In this last numerical experiment, the effect of varying 1X

on the numerical accuracy of the matrix solution was

examined. This was done by studying the variation of the

matrix condition number [16] with respect to IX for a fixed

matrix size. After studying several cases it was found that

an optimum sampling range may be defined by the follow-

ing choice of subsection length lX:

1.5a 4a
<lx<

NSTOP NSTOP “
(50)

Sampling within this range automatically avoids the erratic

current condition and provides the best accuracy in the
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matrix solution, and also in the solution for network

parameters.

To support this last claim, consider the plot of Fig. 13. It

is seen that the optimum sampling region specified by (50)

coincides directly with the flat convergence region for the

Leff calculation. This consistency between the optimum

sampling region and the flat convergence region for the

L,ff calculation was observed in all the cases examined [8].

VI. SUMMARY

In the theoretical part of the presented research, a

method of moments formulation for the shielded mi-

crostrip problem was derived based on a more realistic

excitation model than used with previous techniques. The

formulation follows from the reciprocity theorem, with the

use of a frill current model for the coaxial feed.

Computational considerations for implementing the the-

oretical solution were studied extensively. Several numeri-

cal experiments were presented that explored the conver-

gence and the stability of the solution. Most significantly,

it was found that an erratic current condition and an

optimum sampling range exist; both of these are given by

very simple relationships.

APPENDIX

A. One-Port Network Parameters (Open-End Discontinuity)

The effective length extension (Fig. 10) for an open-end

discontinuity is given by

(Al)

where d~= is the distance from the end of the line to a

current maximum.

The normalized equivalent capacitance (Fig. 10) can be

expressed as

sin 2~g d~w sin2~gL~ff
c= (A2)

‘p o (1 – cos2j?g d~u) = o (1 + cos2&Le~~ ) “

In the above, ~g is the phase constant of microstrip

transmission line.

B. Two-Port Network Parameters (Gap Discontinuity,

Coupled Line Filters>

For the computation of two-port network parameters,

the strip geometry is assumed to be physically symmetric

with respect to the center of the cavity (in both the x and

y directions of Fig. 1). The network parameters are deter-

mined by analyzing the current from the even- and odd-

mode excitations as discussed in [2], [8], [15].

The normalized impedance parameters are given by

Z;N + Z;N
Zll = 2

(A3)

(A4)

where z;~ and z;~ are the input impedances of the even-

and odd-mode networks. The scattering parameters for the
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Fig. 12. Convergence of Lef[ on n and m.
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Fig. 13. Illustration of optimum sampling range which is seen to cc,rre-
spond directly with the flat convergence region for the L.eff computation.

@
network may be derived using the following relations:

Z;l – 1 – z:’
Sll = S22=

D
(A5)

2Z12
S12 = S21= —

D
(A6)

where

D = Z;l +2zII – Z:2. (A7)
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