1758

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 12, DECEMBER 1988

A Generalized Method for Analyzing Shielded

Thin Microstrip Discontinuities

LAWRENCE P. DUNLEAVY anD PISTI B. KATEHI, MEMBER, IEEE

Abstract — A new integral equation method is described for the accurate
full-wave analysis of shielded thin microstrip discontinuities. The integral
equation is derived by applying the reciprocity theorem, then solved by the
method of moments. In this derivation, a coaxial aperture is modeled with
an equivalent magnetic current and is used as the excitation mechanism for
generating the microstrip currents. Computational aspects of the method
have been explored extensively. A summary of some of the more interest-
ing conclusions is included.

1. INTRODUCTION

HE NEED FOR more accurate microstrip circuit

simulations has become increasingly apparent with
the advent of monolithic microwave integrated circuits
(MMIC’s), as well as the increased interest in millimeter-
wave and near-millimeter-wave frequencies. The develop-
ment of more accurate microstrip discontinuity models,
based on full-wave analyses, is of the utmost importance in
improving high-frequency circuit simulations and reducing
lengthy design cycle costs. Further, in most applications
the microstrip circuit is enclosed in a shielding cavity (or
housing) as shown in Fig. 1. There are two main conditions
where shielding effects are significant: 1) when the fre-
quency approaches or is above the cutoff frequency f, for
higher order modes and 2) when the metal enclosure is
physically close to the circuitry. A full-wave analysis is
required to accurately model these effects.

Although shielding effects have been studied to some
extent in the past (e.g. [1]), the treatment has been incom-
plete, particularly for more complicated structures such as
coupled line filters. Further, shielding effects are not accu-
rately accounted for in the discontinuity models of most
available microwave CAD software. To address these inad-
equacies, this paper develops an accurate method for ana-
lyzing thin strip discontinuities in shielded microstrip. The
method presented is based on an integral equation ap-
proach. The integral equation is derived by an application
of the reciprocity theorem and is then solved by the
method of moments.
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Fig. 1. Basic shielded microstrip geometry.

To derive a realistically based formulation, a coaxial
excitation mechanism is used. To date, all full-wave analy-
ses of microstrip discontinuities use either a gap generator
excitation method [2]-[4] or a cavity resonance technique
[5], [6]. Both of these techniques are purely mathematical
tools. The former has no physical basis relative to an
actual circuit. The latter is also abstract, since in any
practical circuit some form of excitation is present. In fact,
one of the most common excitations in practice comes
from a coaxial feed (Fig. 1). A magnetic current model for
such a feed is used in the present treatment as the excita-
tion.

In addition to developing the theory, computational
aspects of the solution are explored extensively. This is an
important area that has been largely neglected in the
presentation of numerical solutions of this nature. Most
significantly, it is shown that an optimum sampling range
may be specified that dictates how to divide the conduct-
ing strip for best computational accuracy. The method
developed in this paper has been applied to study the
effect of shielding on the characteristics of discontinuities
of the type shown in Fig. 2. Numerical results from this
study are presented in a companion paper [7] and. are seen
to be in excellent agreement with measured data.

II. THEORETICAL FORMULATION

The details of the theoretical derivation for the present
method are given in [8]. Hence, only a summary of the key
steps is described below.

(0018-9480 /88 /1200-1758$01.00 ©1988 IEEE
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Fig. 2. Discontinuity structures addressed in the present research.

A. Integral Equation

In the theoretical formulation, a few simplifying as-
sumptions are made to reduce unnecessary complexity and
excessive computer time. Throughout the analysis, it is
assumed that the width of the conducting strips is small
compared to the microstrip wavelength A (the “ thin-strip”
approximation). In this case, the transverse component of
the current may be neglected. While substrate losses are
accounted for, it is assumed that the strip conductors and
the walls of the shielding box are lossless and that the strip
has infinitesimal thickness. These assumptions are valid
for the high-frequency analysis of the microstrip structures
of Fig. 2, provided good conductors are used in the metal-
ized areas.

Consider the geometry of Fig. 1. In most cases the
coaxial feed, or “launcher,” is designed to allow only
transverse electromagnetic (TEM) propagation, and the
feed’s center conductor is small compared to a wavelength
(kr,<1). In these cases, the radial electric field will be
dominant in the aperture and we can replace the feed by
an equivalent magnetic surface current M, [9]. This cur-
rent is sometimes called a frill current. The source M,
induces the current distribution J, on the conducting strip
and produces the total electric field E*' and the total
magnetic field H'* inside the cavity as indicated in Fig. 1.

Now consider a cavity geometry similar to Fig. 1, with
the strip conductors as well as the coaxial input and output
removed. Assume a test current fq existing on a small
subsection of the area which was occupied by the strip.
The fields inside this new geometry are denoted by E, and
H,. Using the reciprocity theorem, the two sets of sources

(M,, J; and fq) are related according to

[ [ [1 5 )

where V represents the volume of the interior of the cavity.

Note that the reciprocity theorem has been widely used
for developing integral equations similar to (1) for applica-
tion to antenna and scattering problems [10]-[12]. Since
J_q- E™* is zero everywhere inside the cavity, the right-hand
side of (1) vanishes. Reducing the remaining volume inte-

' R

x = (p-1)1 a
P x

Fig. 3. Strip geometry for expansion of longitudinal current into over-
lapping sinusoidal basis functions.

grals in (1) to surface integrals results in

ffs Eq(z=h)'fsds=ffsﬁq(x=0)-ﬂ7sds (2)

Strip

where S, is the surface of the conducting strip and S; is
the surface of the coaxial aperture(s). For one-port discon-
tinuities, S, represents the surface of the feed on the
left-hand side of Fig. 1, while for two-port discontinuities
S, represents both feed surfaces. An integral equation
similar to (2) can be derived for the case of gap generator
excitation by setting M, =0 and assuming that E,_ is
nonzero at one point on the strip [8].

In order to solve the integral equation (2), the current
distribution J, is expanded into a series of orthonormal
functions as follows!:

(3)

where [, are unknown current coefficients and N is the
number of sections considered on the strip (Fig. 3). The
function ¥(y) describes the transverse variation of the
current and is given by [2], [13]

2
aW Yo—W/2<y
SO W A o)) <hHW2 @
w
0, otherwise

where W is the width of the microstrip line and Y}, is the y
coordinate of the center of the strip with respect to the
origin in Fig. 1.

'The assumed time dependence 1s e/*.
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The basis functions a,(x) are described by

sin [K(xpﬂ— x)]

sn(Kl) 0 pSTSTa
a,(x) = sin[K(x—xp_l)] (5)
X, 1 SX<X
sin (K1) ’ p=1 7
0, otherwise

for p#1, and

sin[K (1, —x)]
sn(Ki)
0, otherwise

O0<x<l,
a(x) =

for p =1, where K is a scaling factor, taken to be equal to
the wave number in the dielectric, x, is the x coordinate
of the pth subsection (= (p —1)/ ), and /_ is the subsec-
tion length (/,=x,,;— x,). For computation, all of the
geometrical parameters are normalized with respect to the
dielectric wavelength (A ,); hence the normalized scaling
factor is equal to 2.

The integral equation (2) can now be transformed into a
matrix equation by substituting the expansion of (3) for
the current J,. The result may be put in the form

[z][1]=[V]. (7)
In the above, [Z] is an N, X N, impedance matrix, [I]is a
vector composed of the unknown current coefficients 1,
and [V] is the excitation vector. The individual elements of

the impedance matrix are given by
2= [ [ Bz =) 54 (ey(x) s (3)

'y

where S, is the area of the two subsections on either side
of the point x,. The elements of the excitation vector are

»
found according to

V,= f/SfI_Iq-J\st.

Once the elements of the impedance matrix and excita-
tion vector have been computed, the current distribution is
found by solving (7) as follows:

[1]1=[z]7"[v].

©)

(10)

B. Evaluation of Impedance Matrix Elements

Before evaluating the elements of the impedance matrix,
the Green’s function associated with the electric current J_q
is derived. To do this the cavity is divided into two
regions: region 1 consists of the volume contained within
the substrate (z < k), while region 2 is the volume above
the substrate surface (z > k).

The integral form of the electric field is given in terms of
the Green’s function by

I %63)-(5’)14‘@' (11)

B~ jawof [ |7+
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where k? = w*se,. The index i indicates that the above
holds in each region (i.e., for i =1,2).

In (11), G' is a dyadic Green’s function [14] satisfying
the following equation:

_ v 2G' + k2G' = — I8(7 — ') (12)
where I is the unit dyadic (=#££+ pp+ £%), 7 is the
position vector of a field point anywhere inside the cavity,
and 7 is the position vector of an infinitesimal current
source.

Because of the existence of an air—dielectric interface
and the assumption of a unidirectional current, the dyadic
Green’s function will have the form

G' =G 3% + G %5, (13)
The dyadic components of (13) are found by applying
appropriate boundary conditions at the walls: x=0, a;

y=0,b; and z=0,c¢; and at the air—dielectric interface
[8]. These components may be expressed as

GR= 3 Y A cosk xsink,ysink(z (14)
m=1 n=0
GH= Y B{)sink, xsink ycosk{Vz (15)
m=1n=0
GP= Y ) AQcosk xsink,ysink®(z—c) (16)
m=1n=0
GP= ) ) BQsinkxsink,ycosk®(z—¢) (17)
m=1n=0
where
k. =nw/a (18)
k,=mm/b (19)
kD =\kf—k}— k2 (20)
kP =\ ki —k2—k2 (21)
ky= @y (22)
ko= wypeeg (23)
and
@ _ T 9nc0s k.x'sink, y"tan k@ (h—c)
mn abd,,,, cosk‘Oh
(24)
o cosk, x'sink,y’tan kMh
™" abdy,,,cosk®(h—c)
(25)
5
—@,(1=¢} )k, cosk x'sink,y tan kDhtan k®(h—c)
B abd,,, d,, cosk®h
(26)
50

o (I1—€f)k,cosk,x'sink,y tan kPhtan kP (h—c)
a abd,,,,d3mnc0s kP (h—c) |

1mn

2mn

(27)
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In (24)—(27), € is the complex dielectric constant of the
substrate and :

forn=20

_f2
<p,,—{4 forn+#0 (28)
A1y =kPtankPh— kD tan kD (h—c) (29)
dype=kPextank@(h—c)— kP tan kOh. (30)

In view of (11)-(30), the elements of the impedance
matrix may be put in the following form?:

NSTOP

jop K2
- 88, L @,cosk.x, cosk, x,
n=0

%~ 16absin’ K1,
[sincR,, sincR,,]’LN(n) (31)

with LN(n) given by the series

MSTOP

IN(n)= Y L,,.

(32)

The series elements L, are given by

. kW]
@, sm(kyYO)Jo(—2——) tan kOhtan k@ (h - ¢)
L

mn

(k@ tan kOh— kP tan k@ (h - c)]

k? k2
[kﬁz)e;“ (1 - ﬁ) tank@(h—c)~ k" (1 - F) tan k_f”h}
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current is given by [9]
Vy .

— ¢
ol
r

a

M=~ (38)

where 7}, is the complex voltage applied by the coaxial line
at the feed point, r, is the radius of the coaxial feed’s outer
conductor, r, is the radius of the coaxial feed’s inner
conductor, and p, ¢ are cylindrical coordinates referenced ..
to the feed’s center.

Substituting from (38) into (9) yields (with ds = pdp d¢)

Vo
V,=- (rb)fLHq¢(x=0)dpd¢
In|— 4
r(l

| H@(x=0)dods
Spn

]

/(2)

HQ(x=0)dp d¢} (39)

1 0

where Y, is the y coordinate of the center of the strip, and

sin ¢
sinc(r)={ 5 fort#0 (34)
1 fort=0
2 for g =1
= 35
§q {4 otherwise (35)
1
Rlnzi(K-’—kx)lx (36)
1
R2n=5(K_—kx)lx' (37)

C. Evaluation of the Excitation Vector Elements

The formulation for the excitation vector elements for
the one-port case will now be carried out. The case for
two-port excitation is a straightforward extension [8)].

To evaluate the excitation vector elements according to
(9), we need to find the magnetic field H , and the frill
current M, = M ¢. An approximate expression for the frill

*The expression given here for the impedance matrix elements, and
that given shortly for the excitation vector elements, apply to the case of
an open-end or series gap. Slight modifications are necessary for analysis
of parallel coupled line filters.

(33)

[kPex tan k@ (h— )~ kY tan kDh)

where SV is the portion of the feed surface below the
substrate—air interface (z”/ =psing < —¢); Sf‘z’ is the por-
tion of the feed surface above the substrate (z” = psing >
—1); and H{)(x=0) and HQ(x =0) are the é compo-
nents of the magnetic field in regions 1 and 2, respectively,
evaluated on the plane of the aperture.

After solving for the magnetic fields H_,(x =0) and
substituting the resulting expressions into (39), the follow-
ing formulation is produced for excitation vector elements:

NSTOP
v,= - Y. cosk.x,
1n(-)4absinKlX n=0

a

~ Vo K2

-sincR;, sincR,, [MN(n)] (40)

where MN(n) is expressed in terms of the series given by

MSTOP

Z an'

m=1

MN(n)= (41)
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The series elements M, , are given by the following inte-
gral:

an=ffsf///inndpd¢

=ffsa)%fil dpd¢+ffs(2;/%§3; dpde. (42)
1 %

The above integrations are performed numerically, with
the integrands .#,, given by

MY =cospch) cosk ,(pcose +Y,)sin kM (psing + k)

mn m

—singcl)), sink,(pcos¢ +Y,)coskD(psing+h,.) (43)

ymn

for p and ¢ in region 1, and

M =cospcl;), cosk (pcose +Y,)

sin kP (psing — ¢+ h_)—sinpc?

-coskP(psing~c+h,)

(44)

for p and ¢ in region 2. In (43) and (44) Y, and 4, are the
y and z coordinates of the coaxial feed, and

(€3]

c"mn
c®, = ky~d2mn (kDK Pex tan k®(h - c)
—[(k®)+ k21— )] tan kOn ) (45)
Pk, tan kP (h—¢) w
1) _ n-y . _
o = i cosk 0k sin kY, Jo(ky 5 ) (46)
2 i 2 )
@ —_ 2" [ (D2 ¢
@, kydzm,,{kz k® tan kOh
(k@) —R2(1-0)[1an k@ (1= )} (47)
ok tan kOh w
2 - n™y z . -
c? I sk (A=) sin kY, Jo(ky 5 ) (48)

The above outlines the theory for computing the current
distribution on the conducting strips of shielded microstrip
discontinuities. The next step is to use the current distribu-
tion to derive the network parameters of the discontinuity
under consideration. However, since the methods used to
derive network parameters are described elsewhere [2], [8],
[15], only a brief summary is given in the Appendix.

The theoretical method developed above has been im-
plemented in a Fortran program. The remainder of the
paper addresses computational aspects of the solution for
the current distribution and discontinuity network parame-
ters.

III. CoMPUTATION OF CURRENT DISTRIBUTION

To gain insight into the nature of the computations, we
will now examine plots of a typical impedance matrix,
excitation vector, and current distribution for an open-
ended microstrip line.
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Fig. 4. Impedance matrix for an open end.
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Fig. 5. Inverted impedance matrix for an open end. The sinuscidal
shape of any row or column corresponds to the shape of the current
distribution.

Fig. 4 shows the amplitude distribution of a typical
impedance matrix. It is seen that the amplitude of the
diagonal elements is the greatest and it tapers off uni-
formly as one moves away from the diagonal. Another
observation is that the matrix is symmetric such that
Z,,=2,, for any p and g, which is expected from (31).
When the impedance matrix of Fig. 4 is inverted, the
amplitude distribution is as shown in Fig. 5. The inverted
impedance matrix shows a sinusoidal shape for any given
row or column.

Fig. 6 shows the amplitude distribution for the excita-
tion vector. The amplitude is highest over the subsection
closest to the feed and then tapers off smoothly. In con-
trast, the excitation vector for the gap generator method
has only one nonzero value, at the position of the source.
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Fig. 6. Amplitude distribution of the excitation vector.
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Fig. 7. Imaginary part of the current distribution for an open-ended

line.

Multiplying the inverted impedance matrix by the exci-
tation vector of Fig. 6 yields the current distribution of
Fig. 7. It can be seen that the shape of the current is
similar to that exhibited by the first column of the inverted
impedance matrix. This is not surprising given the shape of
the excitation vector.

IV. CONVERGENCE OF Z 4p AND Vq

In the expressions of (31) and (40) for the impedance
matrix and excitation vector elements, the summations
over m and n are theoretically infinite. The number of
elements included in these series depends on the conver-
gence behavior of Z,, and V with the summation indices.

As seen from (31), the convergence of the impedance
matrix is described mainly by the convergence of LN(n).
Fig. 8 shows the typical variation of LN(n) with m and n.
Most of the contributions from LN(n) to the impedance
matrix are concentrated in the first several n values. The
convergence over m is good, and it appears that perform-
ing the computations out to m =200 may be sufficient.
Note, however, that the allowable truncation points for the
summations over m and n vary with the geometry. The
values quoted here are for illustration purposes only.

The computation of Z , over n is illustrated for a
typical impedance matrix in Fig. 9. Shown is the conver-
gence behavior for one row (g = 32) of the 64 X 64 element
impedance matrix of Fig. 4. This behavior is representative
of that for any row. After only a few terms the diagonal

- 1763

. /LN(n)/
dependenc(s

n-dependence

n=z100

Fig. 8. Three dimensional plot of LN(n) versus summation indices.

I

N N=100
Fig. 9. Convergence of impedance matrix elements. A row (g = 32) of
the matrix is seen to be well formed after adding 100 terms on »n.

element (p=¢g=32) rises above the others, and after
adding 100 terms the amplitude distribution is well formed.

Similar conclusions can be drawn for the convergence of
the excitation vector elements with respect to the summa-
tion indices m and n.

V. CONVERGENCE OF NETWORK PARAMETERS

The convergence behavior of the elements of the
impedance matrix and excitation vector is important to
examine; yet the more relevant question remains: how are
the final results affected by various convergence-related
parameters?

To answer this question, a series of numerical experi-
ments were carried out, and the main results are presented
here. As illustrated in Fig. 10, an open-end discontinuity
can be represented by either an effective length extension
L or an equivalent capacitance c,,. The microstrip effec-
tive dielectric constant e is calculated from the distance
between two adjacent maxima of the open-end current
distribution (Fig. 7).

The experiments investigated the convergence behavior
of L and e, with respect to the sampling rate N,(=
1/1) and the truncation points NSTOP, M STOP for the
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Fig. 10. Representation of a shielded microstrip open end.

summations over n and m, respectively. These numerical
experiments have been grouped into three separate cate-
gories, each exploring a different aspect of the convergence
behavior.’

A. Effect of K Value

Using the program mentioned above, data were gener-
ated to plot L., with €., versus N, for several different
values of the normalized scaling factor K of (5) and (6).
Fig. 11(a) shows the convergence behavior of L. for a
typical case. It is seen that a relatively flat convergence
region exists for all the K values between about 40 and
100 samples per wavelength. Outside this region the con-
vergence behavior depends on K.

At first glance, it appears that the best convergence is
achieved for higher K values (e.g. K = 8 ); however, quite
the opposite conclusion results from examining the e
computation. As can be seen from Fig. 11(b), the best
convergence for e, is obtained for low K values.

Based on these and other observations [8], it was deter-
mined that a value of K = 2 gives the best overall conver-
gence behavior for the L and e computations.

B. L.y, €, Convergence on n and m

. To investigate the convergence of the network parameter
computations with the summation index n, several pro-
gram runs were executed for different values of NSTOP,
with M STOP fixed at 1000. Data were generated to plot
L.y and e, versus n for several /, values. Fig. 12(a)
shows that for all the / values, good convergence on 7 is
achieved after 500 terms. The same can be said for the
convergence of €.

In examining the convergence behavior with n it was
found that, for a given subsection length /,, cavity length
a, and truncation point NSTOP, a maximum sampling
limit exists beyond which the computed current becomes

*The parameters used for the plots shown in this section are as follows:
€, =97 W=h=00251in, a=3.5in, b=¢=0251in, f =18 GHz.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 12, DECEMBER 1988

Leff CONVERGENCE VS. K AND SAMPLING

0.45

0.40 o
K=PI110

—— K-PI
K=2'PI
K=4*P|
K=6°P!
K=8°PI
K=10°PI

0.35 4

h

eff

- 0.30 +

0.25 A

0.15 T T T T T
0 25 50 75 100 128 150

Nx (samples/wavelength)
(a)
€ CONVERGENCE VS. K AND SAMPLING

K=Pl/10
—e— K=PI
K=2"P!
K=4"P|
K=6PI
K=8"PI
K=10°Pi

eff
[+,
s

1 T T

0 50 100 150
Nx (samples/wavelength)

(b)

Fig. 11. Convergence of L. and € versus sampling.

completely erratic. This is called the erratic current condi-
tion and is given by the following simple relationship:

NSTOP
NSTOP+[ <aor N, > ——.

(49)

Outside of the region defined by (49), the numerical
solution appears to be completely stable. To investigate the
convergence behavior with respect to the summation index
m, NSTOP was fixed at 500, and the program was run for
different values of MSTOP. Fig. 12(b) shows that L
converges well on m after about 500 terms. The conver-
gence behavior of e on m was found to be similar to
that for L .

C. Optimum Sampling Range

In this last numerical experiment, the effect of varying /,
on the numerical accuracy of the matrix solution was
examined. This was done by studying the variation of the
matrix condition number {16] with respect to /. for a fixed
matrix size. After studying several cases it was found that
an optimum sampling range may be defined by the follow-
ing choice of subsection length /. :

1.5a ; 4a 50
NsToP S*SNstop” (50)

Sampling within this range automatically avoids the erratic
current condition and provides the best accuracy in the
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matrix solution, and aiso in the solution for network
parameters.

To support this last claim, consider the plot of Fig. 13. It
is seen that the optimum sampling region specified by (50)
coincides directly with the flat convergence region for the
L, calculation. This consistency between the optimum
sampling region and the flat convergence region for the
L, calculation was observed in all the cases examined [8].

VI. SUMMARY

In the theoretical part of the presented research, a
method of moments formulation for the shielded mi-
crostrip problem was derived based on a more realistic
excitation model than used with previous techniques. The
formulation follows from the reciprocity theorem, with the
use of a frill current model for the coaxial feed.

Computational considerations for implementing the the-
oretical solution were studied extensively. Several numeri-
cal experiments were presented that explored the conver-
gence and the stability of the solution. Most significantly,
it was found that an erratic current condition and an
optimum sampling range exist; both of these are given by
very simple relationships.

APPENDIX

A. One-Port Network Parameters (Open-End Discontinuity)

The effective length extension (Fig. 10) for an open-end
discontinuity is given by

(A1)

where d,,, is the distance from the end of the line to a
current maximum.

The normalized equivalent capacitance (Fig. 10) can be
expressed as

. - Sin2, d 3 sin2B L
or w(l-cosZBgdmax) w(1+cos2B, L)

. (A2)

In the above, B, is the phase constant of microstrip
transmission line.

B. Two-Port Network Parameters (Gap Discontinuity,
Coupled Line Filters)

For the computation of two-port network parameters,
the strip geometry is assumed to be physically symmetric
with respect to the center of the cavity (in both the x and
y directions of Fig. 1). The network parameters are deter-
mined by analyzing the current from the even- and odd-
mode excitations as discussed in [2], [8], [15].

The normalized impedance parameters are given by

Zin t Zin

M= (A3)
Zin ~ ZIN

I = D) (A4)

where zfy and z{y are the input impedances of the even-
and odd-mode networks. The scattering parameters for the

1765

Lett CONVERGENCE ON n

036
034
| =
x
& -
- 032 ——— 01
>
o /.__‘. — 02
030 VA o - 03
- —o —h— 04
0.28 4 o ;/ - —a— 05
0.26 T T T
] 200 400 600 800
NSTOP
(@)
CONVIERGENCE ON m
0350
0.3251
'\r/.\ | -
X
) ~.— &
0300 o1
€ 1 —————t
—— 02
- 02754 —————y
> —— 03
-t
——— 04
0250 ] 05
0.2254
0.200 | G e B b e B § A T
0 200 400 600 800 1000 1200
MSTOP
®

Fig. 12. Convergence of L on n and m.

FLAT CONVERGENCE REGION AND OPTIMUM SAMPLING
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Fig. 13. Illustration of optimum sampling range which is seen to corre-

spond directly with the flat convergence region for the L, computation.

network@may be derived using the following relations:

2 2
Zn—1-zj,
Su=98p= D (AS)
2z,
Sp=8,= D (A6)
where
D= z{i+2zy; - 2 (A7)
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